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How to Participate
● Speaker Questions

○ During the presentations, please submit your questions to the speakers by using the 

Zoom Q&A feature, not the chat button

○ At the end of the talk, our moderator will put as many questions as possible to the 

speaker

● Recording

○ We are recording this webinar and will be sharing it via the event page on the Slang 

website

○ A direct link will be posted in chat: https://shader-slang.org/event/2025/10/06/getting-

started-with-slang-automatic-differentiation

● Survey

○ To help us design future Slang events, we would appreciate it if you could complete 

the short survey form that will pop up at the end of the webinar



Introduction: Why Do We Care So Much 

About Derivatives?



A Machine with a Thousand Levers



Practical Problems in Graphics and Beyond

Inverse Rendering

Neural Inverse Rendering of an Indoor Scene From a Single Image, Sengupta et al, 

https://senguptaumd.github.io/Neural-Inverse-Rendering/

https://senguptaumd.github.io/Neural-Inverse-Rendering/
https://senguptaumd.github.io/Neural-Inverse-Rendering/
https://senguptaumd.github.io/Neural-Inverse-Rendering/
https://senguptaumd.github.io/Neural-Inverse-Rendering/
https://senguptaumd.github.io/Neural-Inverse-Rendering/


Practical Problems in Graphics and Beyond

3D Gaussian Splatting for Real-Time Radiance Field Rendering, Kerbl et al, https://repo-

sam.inria.fr/fungraph/3d-gaussian-splatting/

3D Gaussian Splatting

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/


Practical Problems in Graphics and Beyond

Procedural content optimization

Reference Render

Loss



Practical Problems in Graphics and Beyond

Differentiable Physics and 

Simulation

Fluid Simulation on Neural Flow Maps, Deng et al,

https://yitongdeng-projects.github.io/neural_flow_maps_webpage/

https://yitongdeng-projects.github.io/neural_flow_maps_webpage/
https://yitongdeng-projects.github.io/neural_flow_maps_webpage/
https://yitongdeng-projects.github.io/neural_flow_maps_webpage/


Autodiff: Forward Mode, Backward Mode, 

Profit



The Math Part: Intuiting About Derivative Propagation

Forward Mode Reverse Mode

dx0/dx = dx/dx = 1
dx1/dx = dh/dx0 * dx0/dx
dx2/dx = dg/dx1 * dx1/dx
dx3/dx = df/dx2 * dx2/dx

Consider the following equation: y = f(g(h(x))) , which we could alternatively notate as: x0 = x
x1 = h(x0)
x2 = g(x1)
x3 = f(x2)
y  = x3

dy/dx3 = dy/dy = 1
dy/dx2 = dy/dx3 * df/dx2
dy/dx1 = dy/dx2 * dg/dx1
dy/dx0 = dy/dx1 * dh/dx0

y = f(g(h′(x)))y = f(g′(h(x)))y = f′(g(h(x)))y' = f'(g(h(x))) * g'(h(x)) * h'(x) y = f'(g(h(x)))y = f(g'(h(x)))y = f(g(h'(x)))y' = f'(g(h(x))) * g'(h(x)) * h'(x)



Which Mode To Use When

Forward Mode

● Requires a separate pass for each input 

variable for which you want to compute a 

derivative

● Cost is proportional to number of inputs, 

but scales well to large numbers of outputs

“How does changing this parameter affect all 

of these outcomes?”

Reverse Mode

● Requires one forward pass to compute 

and store intermediate values, and one 

backward pass to compute all gradients

● Cost is proportional to number of 

outputs. 

● May also require storage space for 

intermediate values

“How is the outcome affected by each of 

these parameters?”

The most common use case is calculating derivatives WRT to a large 

number of inputs, and only one output – so reverse mode is usually used. 

But there are notable use cases for forward mode, e.g. calculating the 

normal of a SDF by differentiating with respect to position – just a 3-float 

vector. 
Takikawa et al, Neural Geometric Level of Detail: Real-time 

Rendering with Implicit 3D Shapes



The Sticky Part: Hand-Writing Derivatives Is Hard

// The primal function to compute noise

float3 computeNoise(float2 uv, float freq, float amp, float rough)

{

float noise_val = 0.0;

for (int i = 0; i < 5; i++) {

float i_f = (float)i;

float current_freq = freq * pow(2.0, i_f);

float current_amp = amp * pow(rough, i_f);

float term = sin(uv.x * current_freq) * exp(uv.y * current_freq) +

pow(uv.x, 2.0) * cos(uv.y * current_freq);

noise_val += current_amp * term;

}

return float3(noise_val);

}

// The loss function for optimization

float calcLoss(float2 uv, float3 target, float freq,

float amp, float rough)

{

float3 noise_color = computeNoise(uv, freq, amp, rough);

float3 diff = noise_color - target;

return dot(diff, diff);

}

for (int i = 0; i < 5; i++)(                    )′switch(option)

interface IModel

{

float3 forward(float2 uv);

}

class MyImplementingClass : IModel

{

float3 forward(float2 uv) {

// ... some calculation ...

}

}

// call forward on parameter of type IModel

model.forward(position);

?



Generating Derivatives with Slang Is Easy

bwd_diff(calcLoss)(uv, target, dpFreq, dpAmp,

dpRough, 1.0);

// The primal function to compute noise

float3 computeNoise(float2 uv, float freq, float amp, float rough)

{

float noise_val = 0.0;

for (int i = 0; i < 5; i++) {

float i_f = (float)i;

float current_freq = freq * pow(2.0, i_f);

float current_amp = amp * pow(rough, i_f);

float term = sin(cos(uv.x * current_freq)) +

exp(sin(uv.y * current_freq));

noise_val += current_amp * term;

}

return float3(noise_val);

}

// The loss function for optimization

float calculateLoss(float2 uv, float3 target, float freq,

float amp, float rough)

{

float3 noise_color = computeNoise(uv, freq, amp, rough);

float3 diff = noise_color - target;

return dot(diff, diff);

}

// The primal function to compute noise

[Differentiable]

float3 computeNoise(no_diff float2 uv, float freq, float amp, float rough)

{

float noise_val = 0.0;

for (int i = 0; i < 5; i++) {

float i_f = (float)i;

float current_freq = freq * pow(2.0, i_f);

float current_amp = amp * pow(rough, i_f);

float term = sin(uv.x * current_freq) * exp(uv.y * current_freq) +

pow(uv.x, 2.0) * cos(uv.y * current_freq);

noise_val += current_amp * term;

}

return float3(noise_val);

}

[Differentiable]

// The loss function for optimization

float calcLoss(no_diff float2 uv, no_diff float3 target, 

float freq, float amp, float rough)

{

float3 noise_color = computeNoise(uv, freq, amp, rough);

float3 diff = noise_color - target;

return dot(diff, diff);

}

“Differentiable” 

annotation

“no_diff” modifier
void calcLoss_Backward(float2 uv, float3 target,

DifferentialPair<float> freq,

DifferentialPair<float> amp,

DifferentialPair<float> rough,

float)

{ 

/* ... */

}



Getting Your Hands On the Gradients

var dpFreq = diffPair(freq);     // dpFreq.p (the primal value) is set to freq

var dpAmp = diffPair(amp);       // dpAmp.p is set to amp

var dpRough = diffPair(rough);   // dpRough.p is set to rough

bwd_diff(calcLoss)(uv, target, dpFreq, dpAmp, dpRough, 1.0);

// gradients stored in dpFreq.d, dpAmp.d, dpRough.d

dpFreq = diffPair(freq, 1.0);     // Set dpFreq.d to 1.0 to find the derivative WRT freq

dpAmp = diffPair(amp, 0.0); // Other variables are held constant, so their derivatives 

are 0

dpRough = diffPair(rough, 0.0);

DifferentialPair<float> dpOut = fwd_diff(calcLoss)(uv, target, dpFreq, dpAmp, dpRough);

// dpOut.d contains the derivative of calcLoss WRT freq

// dpOut.p contains the result of calcLoss when called normally with freq, amp, rough as params



Differentiable Types: The Compiler’s Got 

Your Back



The IDifferentiable Interface

● Slang will only generate differential 

code for values of a type conforming 

to the IDifferentiable interface.

● Both built-in and user-defined types 

can implement this interface

● This interface requires that any type 

implementing it has an associated 

type, which the compiler will use to 

carry the derivative.

● This associated type is accessed via 

Type.Differential

● A type may (and often does) have 

itself as the associated 

Differential type.

● The compiler is almost always able 

to generate the associated 

Differential type

For more information on the behavior of IDifferentiable, see the Slang reference: 
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index

https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index


Built-In Differentiable Types

Built-in types which are differentiable:

● Scalars: float, double, and half

● vector and matrix of differentiable 

scalars

● Arrays of a differentiable type

● Tuple<T, U, V, … > where all 

composing types are differentiable

Non-continuous value types are not 

differentiable

● int, uint, bool

● void

Pointer and reference types are a special 

case…

● This includes resource types like 

RWStructuredBuffer and 

Texture2D



Roll Your Own: User-Defined Differentiable Types

struct myType : IDifferentiable

{

float field;

float3 vecField;

float3x3 matrixField;

}

Most of the time, all you need to do is specify 

the interface

myType.Differential

{

float field;

float3 vecField;

float3x3 matrixField;

}

struct myType : IDifferentiable

{

float field;

float3 vecField;

float3x3 matrixField;

typealias Differential = myType;

}

The compiler can synthesize the differential

Although in this case, the type is identical, so 

instead, it will simply use the existing type as its 

own Differential



Roll Your Own: User-Defined Differentiable Types

struct myType : IDifferentiable

{

int field;

float3 vecField;

float3x3 matrixField;

}

Aggregate types can mix differentiable and non-

differentiable types, while remaining 

differentiable

myType.Differential

{

float3 vecField;

float3x3 matrixField;

}

The compiler is able to synthesize a differential 

type using solely the differentiable fields

struct myType : IDifferentiable

{

int field;

float3 vecField;

float3x3 matrixField;

typealias Differential = myType;

}

Alternatively, if you did want the differential type 

to include the int field, you can still do so by 

explicitly providing the typealias definition 

yourself.



Roll Your Own: User-Defined Differentiable Types

struct myType<T : IDifferentiable> : IDifferentiable

{

T t;

};

struct myType.Differential

{

T.Differential t;

};

Types that aren’t constrained to 

IDifferentiable will not be carried through

struct myType<T : IDifferentiable, U> : IDifferentiable

{

T t;

U u;

};

Generic types can also be IDifferentiable

The synthesized differential type will carry 

through all the differentiable fields, just like a 

concrete aggregate type
struct myType<T, U>.Differential

{

T.Differential t;

};



Roll Your Own: User-Defined Differentiable Types

User-defined differentiable types are passed to 

differentiable functions much like built-in types.

[Differentiable]

float myFunc(myType x)

{ /* ... */ }

Wrap the primal and differential values in a 

differentiable pair. 

myType primal_val;

myType.Differential diff_val;

DifferentialPair<myType> x_pair;

x_pair = diffPair(primal_val, diff_val);

float dOutput = 1.0f;

bwd_diff(myFunc)(x_pair, dOutput);

myType primal_val;

myType.Differential diff_val;

DifferentialPair<myType> x_pair;

x_pair = diffPair(primal_val);

float dOutput = 1.0f;

bwd_diff(myFunc)(x_pair, dOutput);

diffPair() can still be used with a single 

parameter to zero-initialize the differential, if a 

constructor exists.



Getting Fancy: Custom Derivatives



The Why: When Autodiff Isn’t Enough

● Opaque functions

● Buffer accesses

● Numerical instability

Texture2D texture;

texture.Sample(/* ... */);

RWStructuredBuffer<float> myBuffer;

let value = myBuffer[idx];

tan(x);

log(x);

sqrt(x);



The How: Writing a Custom Derivative

[Differentiable]

float square(float x, float y)

{

return x * x + y * y;

}

[ForwardDerivativeOf(square)]

DifferentialPair<float> squareFwd(DifferentialPair<float> x,

DifferentialPair<float> y)

{

return diffPair(square(x.p, y.p),

2.0f * (x.p * x.d + y.p * y.d));

}

[BackwardDerivativeOf(square)]

void squareFwd(inout DifferentialPair<float> x,

inout DifferentialPair<float> y,

float dOut)

{

x = diffPair(x.p, 2.0f * x.p * dOut);

y = diffPair(y.p, 2.0f * y.p * dOut);

}



The How: Writing a Custom Derivative

RWStructuredBuffer<float> yBuffer;​

[Differentiable]​

float square(float x, int yIdx)​

{​

let y = yBuffer[yIdx];​

return x * x +  y * y;​

}

RWStructuredBuffer<Atomic<float>> yGradBuffer;​

[BackwardDerivativeOf(getY)]​

void getYBwd(int yIdx, float dOut)​

{​

yGradBuffer[yIdx] += dOut;​

}

float getY(int yIdx) { return yBuffer[yIdx]; }​

Step 1: Wrap the buffer access

Step 2: Provide custom derivative

RWStructuredBuffer<float> yBuffer;​

[Differentiable]​

float square(float x, int yIdx)​

{​

let y = getY(yIdx);​

return x * x +  y * y;​

}



The How: Writing a Custom Derivative

[Differentiable]​

float square(float x, float y)​

{​

let x2 = x * x;​

let y2 = y * y;​

return x2 + y2;​

}

[BackwardDerivativeOf(debugGrad)]​

void debugGradBwd(​inout DifferentialPair<float> x, 

float dOut)​

{​

printf("Gradient is %f\n", dOut);​

x = diffPair(x.p, dOut);​

}

[Differentiable]​

float square(float x, float y)​

{​

let x2 = x * x;​

let y2 = debugGrad(y * y); ​

return x2 + y2;​

}

Step 1: Wrap the variable to be debugged Step 2: Add the printf custom derivative

float debugGrad(float x) { return x; }



Resources

Neural material

4.29 ms 5.73  ms

Neural

2x16 wide layers

Neural

2x32 wide layers

Neral Shading - SIGGRAPH 2025

Slang Autodiff Documentation

Slang Playground: try.shader-slang.org

Join us on Discord!

https://youtube.com/playlist?list=PLPTS9gmXL0u_BA3bG67IYQHgrMl48Xml3&si=fDnwbkxa40OG2Bmb
https://youtube.com/playlist?list=PLPTS9gmXL0u_BA3bG67IYQHgrMl48Xml3&si=fDnwbkxa40OG2Bmb
https://youtube.com/playlist?list=PLPTS9gmXL0u_BA3bG67IYQHgrMl48Xml3&si=fDnwbkxa40OG2Bmb
https://docs.shader-slang.org/en/latest/external/slang/docs/user-guide/07-autodiff.html
https://try.shader-slang.org
https://try.shader-slang.org
https://try.shader-slang.org


A recording of this presentation will be available at 

https://shader-slang.org/news/

For more information on Slang, please visit 

https://shader-slang.org

Email: slang@lists.khronos.org

https://shader-slang.org/news/
https://shader-slang.org/news/
https://shader-slang.org/news/
https://shader-slang.org/
https://shader-slang.org/
https://shader-slang.org/
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