8w

Slang Virtual Meetup - October 21, 2025

©» Getting Started with Slang:
(Automatic Differentiation

Slang" shader-slang.org

How to Participate
e Speaker Questions

o During the presentations, please submit your questions to the speakers by using the
Zoom Q&A feature, not the chat button

o At the end of the talk, our moderator will put as many questions as possible to the
speaker

e Recording ; 4

o ol

o We are recording this webinar and will be sharing it via the event page on the Slang
website

A direct link will be posted in chat: https://shader-slang.org/event/2025/10/06/getting-
started-with-slang-automatic-differentiation

(@)

&~

z

e Survey

o To help us design future Slang events, we would appreciate it if you could complete
the short survey form that will pop up at the end of the webinar

KHRCONOS

- GROUFP

Slang" shader-slang.org

O

A Machine with a Thousand Levers

Practical Problems in Graphics and Beyond

Inverse Rendering
Image Normal Albedo Lighting Recon. with RAR

Neural Inverse Rendering of an Indoor Scene From a Single Image, Sengupta et al,
https://senguptaumd.github.io/Neural-Inverse-Rendering/

https://senguptaumd.github.io/Neural-Inverse-Rendering/
https://senguptaumd.github.io/Neural-Inverse-Rendering/
https://senguptaumd.github.io/Neural-Inverse-Rendering/
https://senguptaumd.github.io/Neural-Inverse-Rendering/
https://senguptaumd.github.io/Neural-Inverse-Rendering/

Practical Problems in Graphics and Beyond

3D Gaussmn Splattmg

3D Gaussian Splatting for Real-Time Radiance Field Rendering, Kerbl et al, https://repo-
sam.inria.fr/fungraph/3d-gaussian-splatting/

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Practical Problems in Graphics and Beyond

ion

izat

m

Procedural content opt

Render

Reference

Practical Problems in Graphics and Beyond

Differentiable Physics and

Fluid Simulation on Neural Flow Maps, Deng et al,
https://yitongdeng-projects.github.io/neural flow maps webpage/

https://yitongdeng-projects.github.io/neural_flow_maps_webpage/
https://yitongdeng-projects.github.io/neural_flow_maps_webpage/
https://yitongdeng-projects.github.io/neural_flow_maps_webpage/

.—Ik‘f e I———————————
W ——

9 N W A0 """"ﬂi“ V‘A('
. [-
‘ go M) AC,

.“—
. '--.'-)
'. B, X -
et T ¥ ¥ i
") A i . L 5
/ St A |
Y N
s g g .
&% > "
e RS , @ =
., - ’
-~ Pt 4 N
’v‘.‘ .
‘.
», = ¥
.
.
L

[ol cline® o ',:'.‘ ' e -.) "J ﬁ #
"‘_" \ ~) um-z'- l.

The Math Part: Intuiting About Derivative Propagation

Consider the following equation: y = f(g(h(x))) , which we could alternatively notate as: x, = x

x; = h(x,)
X, = g(x,)
x; = 1(x,)
Yy =X%3
Forward Mode Reverse Mode
dx,/dx = dx/dx = 1 dy/dx; =dy/dy =1
dx,/dx = dh/dx, * dx,/dx dy/dx, = dy/dx; * df/dx,
dx,/dx = dg/dx, * dx, /dx dy/dx, = dy/dx, * dg/dx,
dx,/dx = df/dx,* dx,/dx dy/dx, = dy/dx, * dh/dx,

y' =f(gh(x))) * g'(h(x)) * h'(x) y' = f(gh(x))) * g'(h(x)) * h'(x)

Which Mode To Use When

Forward Mode Reverse Mode
e Requires a separate pass for each input e Requires one forward pass to compute
variable for which you want to compute a and store intermediate values, and one

derivative
e Cost is proportional to number of inputs,
but scales well to large numbers of outputs

backward pass to compute all gradients
e Cost is proportional to number of
outputs.
e May also require storage space for

] . intermediate values
“How does changing this parameter affect all

of these outcomes?” “How is the outcome affected by each of
these parameters?”

The most common use case is calculating derivatives WRT to a large
number of inputs, and only one output — so reverse mode is usually used.
But there are notable use cases for forward mode, e.g. calculating the
normal of a SDF by differentiating with respect to position — just a 3-float
vector.

Takikawa et al, Neural Geometric Level of Detail: Real-time
Rendering with Implicit 3D Shapes

The Sticky Part: Hand-Writing Derivatives Is Hard

// The primal function to compute noise

float3 computeNoise(float2 uv, float freq, float amp, float rough)

{
float noise_val = 0.9;
for (int i = 0; i < 5; i++) {
float i_f = (float)i;
float current_freq = freq * pow(2.0, i_f);
float current_amp = amp * pow(rough, i_f);
float term = sin(uv.x * current_freq) * exp(uv.y * current_freq) +
pow(uv.x, 2.0) * cos(uv.y * current_freq);
noise_val += current_amp * term;
}
return float3(noise_val);
}

// The loss function for optimization
float calcLoss(float2 uv, float3 target, float freq,
float amp, float rough)

float3 noise_color = computeNoise(uv, freq, amp, rough);
float3 diff = noise_color - target;

return dot(diff, diff);

Generating Derivatives with Slang Is Easy

// The primal function to compute noise

[Differentiable]

float3 computeNoise(no_diff float2 uv, float freq, float amp, float rough)

{
float noise_val = 0.0;
for (int i = 0; 1 < 5; i++) {
float i_f = (float)i;
float current_freq = freq * pow(2.90,
float current_amp = amp * pow(rough, i_f);
float term = sin(uv.x * current_freq) #»exp(u * current_freq) +
pow(uv.x, 2.0) * cos
noise_val += current_amp * tepsf,
}
return float3(noise_val);
3
[Differentiable]

// The loss function fo
float calclLoss(no_diff float2 uv, no_diff float3 target,

float freq, float amp, float rough)

float3 noise_color = computeNoise(uv, freq, amp, rough);
float3 diff = noise_color - target;

return dot(diff, diff);

/*

“Differentiable”
annotation

*/

bwd_diff(calcLoss)(uv, target, dpFreq, dpAmp,
dpRough, 1.0);

void calclLoss Backward(float2 uv, float3 target,

DifferentialPair<float> freq,
DifferentialPair<float> amp,
DifferentialPair<float> rough,
float)

Getting Your Hands On the Gradients

var dpFreq = diffPair(freq); // dpFreq.p (the primal value) is set to freq
var dpAmp = diffPair(amp); // dpAmp.p is set to amp
var dpRough = diffPair(rough); // dpRough.p is set to rough

bwd_diff(calcLoss)(uv, target, dpFreq, dpAmp, dpRough, 1.90);
// gradients stored in dpFreq.d, dpAmp.d, dpRough.d

dpFreq = diffPair(freq, 1.0); // Set dpFreq.d to 1.0 to find the derivative WRT freq
dpAmp = diffPair(amp, 0.0); // Other variables are held constant, so their derivatives
are @

dpRough = diffPair(rough, 0.0);

DifferentialPair<float> dpOut = fwd_diff(calclLoss)(uv, target, dpFreq, dpAmp, dpRough);
// dpOut.d contains the derivative of calcLoss WRT freq

// dpOut.p contains the result of calcLoss when called normally with freq, amp, rough as params

P
=1 v) s S
| »ﬁegm;@ulg

e T o

v

The IDifferentiable Interface

e Slang will only generate differential e A type may (and often does) have
code for values of a type conforming itself as the associated
to the IDifferentiable interface. Differential type.

e Both built-in and user-defined types e The compiler is almost always able
can implement this interface to generate the associated

e This interface requires that any type Differential type

implementing it has an associated
type, which the compiler will use to
carry the derivative.

e This associated type is accessed via
Type.Differential

For more information on the behavior of IDifferentiable, see the Slang reference:
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index

https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index

Built-In Differentiable Types

Built-in types which are differentiable:

e Scalars: float, double, and half

e vector and matrix of differentiable
scalars

e Arrays of a differentiable type

e Tuple<T, U, V, .. >whereall
composing types are differentiable

Non-continuous value types are not
differentiable

e 1int, uint, bool
e void

Pointer and reference types are a special
case...

e This includes resource types like
RWStructuredBuffer and
Texture2D

Roll Your Own: User-Defined Differentiable Types

struct myType : IDifferentiable Most of the time, all you need to do is specify

{

the interface

float field; - The compiler can synthesize the differential
float3 vecField;

float3x3 matrixField;

el S TR myType;\ Although in FhIS. case, the type |§ |Qentlcal, so.
instead, it will simply use the existing type as its

own Differential

Roll Your Own: User-Defined Differentiable Types

struct myType : IDifferentiable

{

int field;
float3 vecField;
float3x3 matrixField;

typealias Differential = myType;

Alternatively, if you did want the differential type
to include the int field, you can still do so by
explicitly providing the typealias definition
yourself.

Roll Your Own: User-Defined Differentiable Types

struct myType<T : IDifferentiable, U> : IDifferentiable
{

Tt Generic types can also be IDifferentiable

U u;

}s The synthesized differential type will carry
through all the differentiable fields, just like a

concrete aggregate type
struct myType<T, U>.Differenti

{

Types that aren’t constrained to

T.Differential t; «....... : -
................... IDifferentiable will not be carried through

I

Roll Your Own: User-Defined Differentiable Types

[Differentiable] User-defined differentiable types are passed to
float myFunc(myType X) differentiable functions much like built-in types.
{ /% ... %/}

myType primal_val; Wrap the primal and differential values in a

myType.Differential diff val; differentiable pair.
DifferentialPair<myType> x_pair;

X_pair = diffPair(primal_val);

float dOutput = 1.0f; diffPair() can still be used with a single
bwd_diff(myFunc)(x_pair, dOutput); parameter to zero-initialize the differential, if a
constructor exists.

The Why: When Autodiff Isn’t Enough

e Opaque functions Texture2D texture;
texture.Sample(/* ... */);

RWStructuredBuffer<float> myBuffer;
e Buffer accesses

let value = myBuffer[idx];

e Numerical instability tan(x);
log(x);
sqrt(x);

The How: Writing a Custom Derivative

[Differentiable] [ForwardDerivativeOf(square)]

float square(float x, float y) DifferentialPair<float> squareFwd(DifferentialPair<float> x,

{ DifferentialPair<float> y)
return x * x +y * vy; {

} return diffPair(square(x.p, y.p),

2.0f * (x.p * x.d + y.p * y.d));

[BackwardDerivativeOf(square)]

void squareFwd(inout DifferentialPair<float> x,
inout DifferentialPair<float> vy,
float doOut)

X
Il

diffPair(x.p, 2.0f * x.p * dOut);
diffPair(y.p, 2.0f * y.p * dOut);

<
1l

The How: Writing a Custom Derivative

RWStructuredBuffer<float> yBuffer; Step 1 Wrap the buffer access

[Differentiable] Step 2: Provide custom derivative

float square(float x, int yIdx)

let y = getY(yIdx);
return x * x + y * y;

}
\ 4
RWStructuredBuffer<Atomic<float>> yGradBuffer;
[BackwardDerivativeOf(getY)]
void getYBwd(int yIdx, float dOut)
float getY(int yIdx) { return yBuffer[yIdx]; } {

yGradBuffer[yIdx] += dOut;
}

The How: Writing a Custom Derivative

[Differentiable]
float square(float x, float y)

{

let x2 X * x;
let y2 = debugGrad(y * y);
return x2 + y2; 2+

Step 1: Wrap the variable to be debugged

float debugGrad(float x) { return x; }

[BackwardDerivativeOf(debugGrad)]
void debugGradBwd(inout DifferentialPair<float> x,
float dOut)

printf("Gradient is %f\n", dOut);
x = diffPair(x.p, dOut);

Step 2: Add the printf custom derivative

il E Resources

Neral Shading - SIGGRAPH 2025

Slang Autodiff Documentation

Slang Playaground: try.shader-slang.org

Join us on Discord! Neural [D:, Neural [D:'

2x16 wide layers 2x32 wide layers

7 Neural material

https://youtube.com/playlist?list=PLPTS9gmXL0u_BA3bG67IYQHgrMl48Xml3&si=fDnwbkxa40OG2Bmb
https://youtube.com/playlist?list=PLPTS9gmXL0u_BA3bG67IYQHgrMl48Xml3&si=fDnwbkxa40OG2Bmb
https://youtube.com/playlist?list=PLPTS9gmXL0u_BA3bG67IYQHgrMl48Xml3&si=fDnwbkxa40OG2Bmb
https://docs.shader-slang.org/en/latest/external/slang/docs/user-guide/07-autodiff.html
https://try.shader-slang.org
https://try.shader-slang.org
https://try.shader-slang.org

A recording of this presentation will be available at
shader-slang.org/news/ ,) ,
3 2
{ // o;
‘\ For more information on Slang, please visit ?7 ‘
' shader-slang.org V-
Email; slang@lists.khronos.org

KHRCONOS £ Slang" shader-slang.org

https://shader-slang.org/news/
https://shader-slang.org/news/
https://shader-slang.org/news/
https://shader-slang.org/
https://shader-slang.org/
https://shader-slang.org/

	Slide 1
	Slide 2
	Slide 3: Introduction: Why Do We Care So Much About Derivatives?
	Slide 4: A Machine with a Thousand Levers
	Slide 5: Practical Problems in Graphics and Beyond
	Slide 6: Practical Problems in Graphics and Beyond
	Slide 7: Practical Problems in Graphics and Beyond
	Slide 8: Practical Problems in Graphics and Beyond
	Slide 9: Autodiff: Forward Mode, Backward Mode, Profit
	Slide 10: The Math Part: Intuiting About Derivative Propagation
	Slide 11: Which Mode To Use When
	Slide 12: The Sticky Part: Hand-Writing Derivatives Is Hard
	Slide 13: Generating Derivatives with Slang Is Easy
	Slide 14: Getting Your Hands On the Gradients
	Slide 15: Differentiable Types: The Compiler’s Got Your Back
	Slide 16: The IDifferentiable Interface
	Slide 17: Built-In Differentiable Types
	Slide 18: Roll Your Own: User-Defined Differentiable Types
	Slide 19: Roll Your Own: User-Defined Differentiable Types
	Slide 20: Roll Your Own: User-Defined Differentiable Types
	Slide 21: Roll Your Own: User-Defined Differentiable Types
	Slide 22: Getting Fancy: Custom Derivatives
	Slide 23: The Why: When Autodiff Isn’t Enough
	Slide 24: The How: Writing a Custom Derivative
	Slide 25: The How: Writing a Custom Derivative
	Slide 26: The How: Writing a Custom Derivative
	Slide 27: Resources
	Slide 28

