
shader-slang.org

Slang Virtual Meetup - October 21, 2025

Getting Started with Slang:
Automatic Differentiation

shader-slang.org

How to Participate
● Speaker Questions

○ During the presentations, please submit your questions to the speakers by using the

Zoom Q&A feature, not the chat button

○ At the end of the talk, our moderator will put as many questions as possible to the

speaker

● Recording

○ We are recording this webinar and will be sharing it via the event page on the Slang

website

○ A direct link will be posted in chat: https://shader-slang.org/event/2025/10/06/getting-

started-with-slang-automatic-differentiation

● Survey

○ To help us design future Slang events, we would appreciate it if you could complete

the short survey form that will pop up at the end of the webinar

Introduction: Why Do We Care So Much

About Derivatives?

A Machine with a Thousand Levers

Practical Problems in Graphics and Beyond

Inverse Rendering

Neural Inverse Rendering of an Indoor Scene From a Single Image, Sengupta et al,

https://senguptaumd.github.io/Neural-Inverse-Rendering/

https://senguptaumd.github.io/Neural-Inverse-Rendering/
https://senguptaumd.github.io/Neural-Inverse-Rendering/
https://senguptaumd.github.io/Neural-Inverse-Rendering/
https://senguptaumd.github.io/Neural-Inverse-Rendering/
https://senguptaumd.github.io/Neural-Inverse-Rendering/

Practical Problems in Graphics and Beyond

3D Gaussian Splatting for Real-Time Radiance Field Rendering, Kerbl et al, https://repo-

sam.inria.fr/fungraph/3d-gaussian-splatting/

3D Gaussian Splatting

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

Practical Problems in Graphics and Beyond

Procedural content optimization

Reference Render

Loss

Practical Problems in Graphics and Beyond

Differentiable Physics and

Simulation

Fluid Simulation on Neural Flow Maps, Deng et al,

https://yitongdeng-projects.github.io/neural_flow_maps_webpage/

https://yitongdeng-projects.github.io/neural_flow_maps_webpage/
https://yitongdeng-projects.github.io/neural_flow_maps_webpage/
https://yitongdeng-projects.github.io/neural_flow_maps_webpage/

Autodiff: Forward Mode, Backward Mode,

Profit

The Math Part: Intuiting About Derivative Propagation

Forward Mode Reverse Mode

dx0/dx = dx/dx = 1
dx1/dx = dh/dx0 * dx0/dx
dx2/dx = dg/dx1 * dx1/dx
dx3/dx = df/dx2 * dx2/dx

Consider the following equation: y = f(g(h(x))) , which we could alternatively notate as: x0 = x
x1 = h(x0)
x2 = g(x1)
x3 = f(x2)
y = x3

dy/dx3 = dy/dy = 1
dy/dx2 = dy/dx3 * df/dx2
dy/dx1 = dy/dx2 * dg/dx1
dy/dx0 = dy/dx1 * dh/dx0

y = f(g(h′(x)))y = f(g′(h(x)))y = f′(g(h(x)))y' = f'(g(h(x))) * g'(h(x)) * h'(x) y = f'(g(h(x)))y = f(g'(h(x)))y = f(g(h'(x)))y' = f'(g(h(x))) * g'(h(x)) * h'(x)

Which Mode To Use When

Forward Mode

● Requires a separate pass for each input

variable for which you want to compute a

derivative

● Cost is proportional to number of inputs,

but scales well to large numbers of outputs

“How does changing this parameter affect all

of these outcomes?”

Reverse Mode

● Requires one forward pass to compute

and store intermediate values, and one

backward pass to compute all gradients

● Cost is proportional to number of

outputs.

● May also require storage space for

intermediate values

“How is the outcome affected by each of

these parameters?”

The most common use case is calculating derivatives WRT to a large

number of inputs, and only one output – so reverse mode is usually used.

But there are notable use cases for forward mode, e.g. calculating the

normal of a SDF by differentiating with respect to position – just a 3-float

vector.
Takikawa et al, Neural Geometric Level of Detail: Real-time

Rendering with Implicit 3D Shapes

The Sticky Part: Hand-Writing Derivatives Is Hard

// The primal function to compute noise

float3 computeNoise(float2 uv, float freq, float amp, float rough)

{

float noise_val = 0.0;

for (int i = 0; i < 5; i++) {

float i_f = (float)i;

float current_freq = freq * pow(2.0, i_f);

float current_amp = amp * pow(rough, i_f);

float term = sin(uv.x * current_freq) * exp(uv.y * current_freq) +

pow(uv.x, 2.0) * cos(uv.y * current_freq);

noise_val += current_amp * term;

}

return float3(noise_val);

}

// The loss function for optimization

float calcLoss(float2 uv, float3 target, float freq,

float amp, float rough)

{

float3 noise_color = computeNoise(uv, freq, amp, rough);

float3 diff = noise_color - target;

return dot(diff, diff);

}

for (int i = 0; i < 5; i++)()′switch(option)

interface IModel

{

float3 forward(float2 uv);

}

class MyImplementingClass : IModel

{

float3 forward(float2 uv) {

// ... some calculation ...

}

}

// call forward on parameter of type IModel

model.forward(position);

?

Generating Derivatives with Slang Is Easy

bwd_diff(calcLoss)(uv, target, dpFreq, dpAmp,

dpRough, 1.0);

// The primal function to compute noise

float3 computeNoise(float2 uv, float freq, float amp, float rough)

{

float noise_val = 0.0;

for (int i = 0; i < 5; i++) {

float i_f = (float)i;

float current_freq = freq * pow(2.0, i_f);

float current_amp = amp * pow(rough, i_f);

float term = sin(cos(uv.x * current_freq)) +

exp(sin(uv.y * current_freq));

noise_val += current_amp * term;

}

return float3(noise_val);

}

// The loss function for optimization

float calculateLoss(float2 uv, float3 target, float freq,

float amp, float rough)

{

float3 noise_color = computeNoise(uv, freq, amp, rough);

float3 diff = noise_color - target;

return dot(diff, diff);

}

// The primal function to compute noise

[Differentiable]

float3 computeNoise(no_diff float2 uv, float freq, float amp, float rough)

{

float noise_val = 0.0;

for (int i = 0; i < 5; i++) {

float i_f = (float)i;

float current_freq = freq * pow(2.0, i_f);

float current_amp = amp * pow(rough, i_f);

float term = sin(uv.x * current_freq) * exp(uv.y * current_freq) +

pow(uv.x, 2.0) * cos(uv.y * current_freq);

noise_val += current_amp * term;

}

return float3(noise_val);

}

[Differentiable]

// The loss function for optimization

float calcLoss(no_diff float2 uv, no_diff float3 target,

float freq, float amp, float rough)

{

float3 noise_color = computeNoise(uv, freq, amp, rough);

float3 diff = noise_color - target;

return dot(diff, diff);

}

“Differentiable”

annotation

“no_diff” modifier
void calcLoss_Backward(float2 uv, float3 target,

DifferentialPair<float> freq,

DifferentialPair<float> amp,

DifferentialPair<float> rough,

float)

{

/* ... */

}

Getting Your Hands On the Gradients

var dpFreq = diffPair(freq); // dpFreq.p (the primal value) is set to freq

var dpAmp = diffPair(amp); // dpAmp.p is set to amp

var dpRough = diffPair(rough); // dpRough.p is set to rough

bwd_diff(calcLoss)(uv, target, dpFreq, dpAmp, dpRough, 1.0);

// gradients stored in dpFreq.d, dpAmp.d, dpRough.d

dpFreq = diffPair(freq, 1.0); // Set dpFreq.d to 1.0 to find the derivative WRT freq

dpAmp = diffPair(amp, 0.0); // Other variables are held constant, so their derivatives

are 0

dpRough = diffPair(rough, 0.0);

DifferentialPair<float> dpOut = fwd_diff(calcLoss)(uv, target, dpFreq, dpAmp, dpRough);

// dpOut.d contains the derivative of calcLoss WRT freq

// dpOut.p contains the result of calcLoss when called normally with freq, amp, rough as params

Differentiable Types: The Compiler’s Got

Your Back

The IDifferentiable Interface

● Slang will only generate differential

code for values of a type conforming

to the IDifferentiable interface.

● Both built-in and user-defined types

can implement this interface

● This interface requires that any type

implementing it has an associated

type, which the compiler will use to

carry the derivative.

● This associated type is accessed via

Type.Differential

● A type may (and often does) have

itself as the associated

Differential type.

● The compiler is almost always able

to generate the associated

Differential type

For more information on the behavior of IDifferentiable, see the Slang reference:
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index

https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index
https://shader-slang.org/stdlib-reference/interfaces/idifferentiable-01/index

Built-In Differentiable Types

Built-in types which are differentiable:

● Scalars: float, double, and half

● vector and matrix of differentiable

scalars

● Arrays of a differentiable type

● Tuple<T, U, V, … > where all

composing types are differentiable

Non-continuous value types are not

differentiable

● int, uint, bool

● void

Pointer and reference types are a special

case…

● This includes resource types like

RWStructuredBuffer and

Texture2D

Roll Your Own: User-Defined Differentiable Types

struct myType : IDifferentiable

{

float field;

float3 vecField;

float3x3 matrixField;

}

Most of the time, all you need to do is specify

the interface

myType.Differential

{

float field;

float3 vecField;

float3x3 matrixField;

}

struct myType : IDifferentiable

{

float field;

float3 vecField;

float3x3 matrixField;

typealias Differential = myType;

}

The compiler can synthesize the differential

Although in this case, the type is identical, so

instead, it will simply use the existing type as its

own Differential

Roll Your Own: User-Defined Differentiable Types

struct myType : IDifferentiable

{

int field;

float3 vecField;

float3x3 matrixField;

}

Aggregate types can mix differentiable and non-

differentiable types, while remaining

differentiable

myType.Differential

{

float3 vecField;

float3x3 matrixField;

}

The compiler is able to synthesize a differential

type using solely the differentiable fields

struct myType : IDifferentiable

{

int field;

float3 vecField;

float3x3 matrixField;

typealias Differential = myType;

}

Alternatively, if you did want the differential type

to include the int field, you can still do so by

explicitly providing the typealias definition

yourself.

Roll Your Own: User-Defined Differentiable Types

struct myType<T : IDifferentiable> : IDifferentiable

{

T t;

};

struct myType.Differential

{

T.Differential t;

};

Types that aren’t constrained to

IDifferentiable will not be carried through

struct myType<T : IDifferentiable, U> : IDifferentiable

{

T t;

U u;

};

Generic types can also be IDifferentiable

The synthesized differential type will carry

through all the differentiable fields, just like a

concrete aggregate type
struct myType<T, U>.Differential

{

T.Differential t;

};

Roll Your Own: User-Defined Differentiable Types

User-defined differentiable types are passed to

differentiable functions much like built-in types.

[Differentiable]

float myFunc(myType x)

{ /* ... */ }

Wrap the primal and differential values in a

differentiable pair.

myType primal_val;

myType.Differential diff_val;

DifferentialPair<myType> x_pair;

x_pair = diffPair(primal_val, diff_val);

float dOutput = 1.0f;

bwd_diff(myFunc)(x_pair, dOutput);

myType primal_val;

myType.Differential diff_val;

DifferentialPair<myType> x_pair;

x_pair = diffPair(primal_val);

float dOutput = 1.0f;

bwd_diff(myFunc)(x_pair, dOutput);

diffPair() can still be used with a single

parameter to zero-initialize the differential, if a

constructor exists.

Getting Fancy: Custom Derivatives

The Why: When Autodiff Isn’t Enough

● Opaque functions

● Buffer accesses

● Numerical instability

Texture2D texture;

texture.Sample(/* ... */);

RWStructuredBuffer<float> myBuffer;

let value = myBuffer[idx];

tan(x);

log(x);

sqrt(x);

The How: Writing a Custom Derivative

[Differentiable]

float square(float x, float y)

{

return x * x + y * y;

}

[ForwardDerivativeOf(square)]

DifferentialPair<float> squareFwd(DifferentialPair<float> x,

DifferentialPair<float> y)

{

return diffPair(square(x.p, y.p),

2.0f * (x.p * x.d + y.p * y.d));

}

[BackwardDerivativeOf(square)]

void squareFwd(inout DifferentialPair<float> x,

inout DifferentialPair<float> y,

float dOut)

{

x = diffPair(x.p, 2.0f * x.p * dOut);

y = diffPair(y.p, 2.0f * y.p * dOut);

}

The How: Writing a Custom Derivative

RWStructuredBuffer<float> yBuffer;​

[Differentiable]​

float square(float x, int yIdx)​

{​

let y = yBuffer[yIdx];​

return x * x + y * y;​

}

RWStructuredBuffer<Atomic<float>> yGradBuffer;​

[BackwardDerivativeOf(getY)]​

void getYBwd(int yIdx, float dOut)​

{​

yGradBuffer[yIdx] += dOut;​

}

float getY(int yIdx) { return yBuffer[yIdx]; }​

Step 1: Wrap the buffer access

Step 2: Provide custom derivative

RWStructuredBuffer<float> yBuffer;​

[Differentiable]​

float square(float x, int yIdx)​

{​

let y = getY(yIdx);​

return x * x + y * y;​

}

The How: Writing a Custom Derivative

[Differentiable]​

float square(float x, float y)​

{​

let x2 = x * x;​

let y2 = y * y;​

return x2 + y2;​

}

[BackwardDerivativeOf(debugGrad)]​

void debugGradBwd(​inout DifferentialPair<float> x,

float dOut)​

{​

printf("Gradient is %f\n", dOut);​

x = diffPair(x.p, dOut);​

}

[Differentiable]​

float square(float x, float y)​

{​

let x2 = x * x;​

let y2 = debugGrad(y * y); ​

return x2 + y2;​

}

Step 1: Wrap the variable to be debugged Step 2: Add the printf custom derivative

float debugGrad(float x) { return x; }

Resources

Neural material

4.29 ms 5.73 ms

Neural

2x16 wide layers

Neural

2x32 wide layers

Neral Shading - SIGGRAPH 2025

Slang Autodiff Documentation

Slang Playground: try.shader-slang.org

Join us on Discord!

https://youtube.com/playlist?list=PLPTS9gmXL0u_BA3bG67IYQHgrMl48Xml3&si=fDnwbkxa40OG2Bmb
https://youtube.com/playlist?list=PLPTS9gmXL0u_BA3bG67IYQHgrMl48Xml3&si=fDnwbkxa40OG2Bmb
https://youtube.com/playlist?list=PLPTS9gmXL0u_BA3bG67IYQHgrMl48Xml3&si=fDnwbkxa40OG2Bmb
https://docs.shader-slang.org/en/latest/external/slang/docs/user-guide/07-autodiff.html
https://try.shader-slang.org
https://try.shader-slang.org
https://try.shader-slang.org

A recording of this presentation will be available at

https://shader-slang.org/news/

For more information on Slang, please visit

https://shader-slang.org

Email: slang@lists.khronos.org

https://shader-slang.org/news/
https://shader-slang.org/news/
https://shader-slang.org/news/
https://shader-slang.org/
https://shader-slang.org/
https://shader-slang.org/

	Slide 1
	Slide 2
	Slide 3: Introduction: Why Do We Care So Much About Derivatives?
	Slide 4: A Machine with a Thousand Levers
	Slide 5: Practical Problems in Graphics and Beyond
	Slide 6: Practical Problems in Graphics and Beyond
	Slide 7: Practical Problems in Graphics and Beyond
	Slide 8: Practical Problems in Graphics and Beyond
	Slide 9: Autodiff: Forward Mode, Backward Mode, Profit
	Slide 10: The Math Part: Intuiting About Derivative Propagation
	Slide 11: Which Mode To Use When
	Slide 12: The Sticky Part: Hand-Writing Derivatives Is Hard
	Slide 13: Generating Derivatives with Slang Is Easy
	Slide 14: Getting Your Hands On the Gradients
	Slide 15: Differentiable Types: The Compiler’s Got Your Back
	Slide 16: The IDifferentiable Interface
	Slide 17: Built-In Differentiable Types
	Slide 18: Roll Your Own: User-Defined Differentiable Types
	Slide 19: Roll Your Own: User-Defined Differentiable Types
	Slide 20: Roll Your Own: User-Defined Differentiable Types
	Slide 21: Roll Your Own: User-Defined Differentiable Types
	Slide 22: Getting Fancy: Custom Derivatives
	Slide 23: The Why: When Autodiff Isn’t Enough
	Slide 24: The How: Writing a Custom Derivative
	Slide 25: The How: Writing a Custom Derivative
	Slide 26: The How: Writing a Custom Derivative
	Slide 27: Resources
	Slide 28

